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A B S T R A C T   

In this study, an effective and novel method, termed Metamodel Assisted Hybrid of Particle Swarm Optimization 
with Genetic Algorithm (MA-HPSOGA), is developed to identify unknown structural dynamic parameters. The 
method first constructs four popular metamodels to substitute the computationally expensive numerical analysis 
based on the Latin hypercube sampling method and probabilistic finite element analysis, and their accuracy is 
assessed by R-squared. Subsequently, a suitable and low-cost metamodel is selected in combination with a hybrid 
optimization strategy by incorporating Genetic Algorithm (GA) into Particle Swarm Optimization (PSO). Two 
examples with measured vibration response data and different levels of complexity are used to verify the 
effectiveness and practicality of the presented method. The results showed that polynomial chaos expansion 
assisted HPSOGA has the highest computational efficiency and accuracy in the four coupled methods. Besides, 
compared to the conventional iteration-based dynamic parameter identification methods, the presented method 
shows an overwhelming advantage in terms of computational efficiency. Furthermore, the performance of 
HPSOGA is compared with its sub-algorithms, showing that the hybrid strategy offers faster convergence and 
stronger robustness. Our findings reveal that the MA-HPSOGA may be used as a promising method for achieving 
high-efficiency model updating in large-scale complex structures.   

1. Introduction 

A mathematical model is a representation or an abstract interpreta
tion of physical reality that is amenable to analysis and calculation. 
Numerical simulation allows us to calculate the solutions of these 
models on a computer, and therefore to simulate physical reality. The 
Finite Element Method (FEM), as one of the most mainstream methods 
for numerical simulations, has always played an extraordinarily 
important role in exploring scientific and engineering problems [1]. For 
example, during project feasibility studies, Finite Element Analysis 
(FEA) has been applied to large civil engineering structures to pre-assess 
structural safety, leading to better construction guidance and risk 
prevention. 

However, the structural finite element (FE) models have inherent 
and epistemic errors, leading to some deviation between the system 

response after FEA and the real system response. These errors can be 
divided into the following three categories: (1) idealistic assumptions 
made to describe the mechanical behavior of physical structures, (2) 
inherent errors introduced by numerical methods and (3) typical errors 
arising from incorrect assumptions regarding model parameters. The 
first two are related to the mathematical structure of the model, which is 
hard to eliminate, while the last typical error can be reduced by model 
updating [2,3]. 

Model updating is essentially an optimization search process for 
solving inverse problems, and it can be an important tool for calibrating 
FE models to mitigate modeling errors [4]. By modifying the modeling 
parameters of the initial FE model, the discrepancy between the model 
response and the measured system response is minimized, enabling the 
behavior of the updated FE model to be as close as possible to the cor
responding real structure. Conventional model updating methods is 
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achieved by a trial-and-error approach and sensitivity analysis approach 
[5,6], which are often time-consuming and may not be feasible in some 
cases. In recent years, with the rapid development of modern intelligent 
algorithms, numerous studies have focused on metaheuristic algorithms 
for FE model updating. 

Tran et al. [7] proposed a hybrid metaheuristic algorithm, which 
incorporates fully the advantages of Genetic Algorithm (GA) and 
Improved Cuckoo Search (ICS), and then updated the FE model of a large 
twin steel truss bridge based on vibration measurement data. Dinh et al. 
[8] developed a Multi-Objective Cuckoo Search (MOCS) algorithm for 
optimizing the objective function in finite element model updating, and 
subsequently implemented the identification of the location and extent 
of multi-damages in functionally graded material structures. Minh et al. 
[9] developed a new balance of Cuckoo Search (NB-CS) algorithm for 
model updating and damage identification of three shell models with 
different levels of complexity, based on co-simulation with SAP2000 
software and MATLAB. Sang et al. [10] proposed a novel stochastic 
optimization algorithm, namely the Planetary Optimization Algorithm 
(POA), for predicting horizontal displacements of diaphragm wall in 
high-rise buildings, and the structural FE model was calibrated based on 
field monitoring data from the early stages of excavation. Wu et al. [11] 
proposed an improved Crow Search Algorithm based on Levy Flight 
(LFCSA) for FE model updating, and the superiority of the proposed 
algorithm was highlighted in comparison with the standard CSA and the 
PSO algorithm with Levy Flight (LFPSO). 

Although modern intelligent algorithms are widely used for model 
updating, the updating process requires numerous calls to the structural 
FE model for iterative optimization. Especially for performing structural 
dynamics or nonlinear analysis, such crude operations make it extremely 
inefficient to apply modern intelligent algorithms to complex structures. 
Fortunately, metamodeling techniques provide a bridge between the 
two. The technique treats the relationship between inputs and outputs as 
a ‘black box’ model, allowing to create a computationally inexpensive 
mathematical approximation to substitute the expensive FE models 
without requiring additional information about the system [12]. There 
are some popular metamodels such as Artificial Neural Network (ANN) 
[13], Polynomial Chaos Expansion (PCE) [14], Kriging [15] and Support 
Vector Regression (SVR) [16], etc. 

Zhou et al. [17] constructed a Multi-Response Gaussian Process 
(MRGP) metamodel to substitute the structural FE model, and then 
adopted PSO and Simulated Annealing Algorithm (SAA) to minimize the 
discrepancy between the predicted and measured structural frequency 
responses. Naranjo et al. [18] developed a new efficient collaborative 
algorithm, which combines Harmony Search and Active-Set Algorithm 
(HS-ASA) and ANN and Principal Component Analysis (PCA). The pro
posed algorithm was applied to address the model updating of a real 
steel footbridge. Wang et al. [19] proposed a multi-scale model updating 
method, which combined Kriging metamodel with Non-dominated 
Sorting Genetic Algorithm-II (NSGA-II) for identifying the unknown 
parameters in transmission tower structures. The results showed that the 
proposed method could improve the accuracy of the tower in both global 
and local structural responses. Xia et al. [20] combined 
Back-Propagation Neural Network (BPNN) with 
Gaussian-white-noise-Mutation Particle Swarm Optimization (GMPSO), 
proposing an effective model updating method for complex bridge 
structures. 

Most of the literature mentioned above usually only employs single 
surrogate model in conjunction with the optimization algorithm for 
model updating, lacking a comprehensive investigation in the compu
tational accuracy and efficiency of surrogate models applied to param
eter identification. As it is well known, no single surrogate model was 
found to be the most effective for all problems. Hence, four widely 
popular metamodels, are chosen in this study, namely ANN, PCE, 
Kriging and SVR, with the view of revealing their differential perfor
mance in assisting the same hybrid optimization strategy, attempting to 
expand the boundaries of the existing literature mostly focusing on 

single metamodel. This paper aims to provide a promising generic 
paradigm for the rapid implementation of FE model updating, and its 
innovations have been integrated as follows:  

• The differential performance of several popular metamodelling 
techniques applied to FE model updating are compared and mech
anistic explanation for the differences is provided.  

• An easy-to-implement method for identifying structural dynamic 
parameters is constructed using the common surrogate models and 
the popular optimization algorithms, breaking through the limita
tions of conventional methods to quickly determine the parameters. 

• Compared with the conventional iteration-based methods, the pro
posed method achieves a qualitative leap in computational efficiency 
while improving the computational accuracy. 

The rest of this article is structured as follows. Section 2 briefly de
scribes the methodology of the four metamodels and HPSOGA, and 
Section 3 presents the procedures and evaluation metrics for the MA- 
HPSOGA method. Next, Sections 4 and 5 use two models with varying 
complexity, aiming to demonstrate the effectiveness and practicality of 
the proposed method. Conclusions are given in Section 6 and some 
detailed results are presented in Appendix A. 

2. Theoretical fundamentals 

This section will briefly introduce the underlying theory of four 
popular metamodels and HPSOGA. 

2.1. Methodology of metamodels 

2.1.1. Artificial neural networks 
Assuming that the vector X = (x1,x2,..., xM) represents the set of 

unknown input parameters, and the corresponding model response 
output vector is expressed as Y=(y1,y2,..., yM) and the hidden layer has n 
neurons, Fig. 1 describes the Architecture of the proposed ANN [21]. 

The input and output of the hidden layer are noted as wl and vl, 
respectively, which can be written in the following form [22,23]: 

wl =
∑M

k=1
δklxk + γl, l = 1, 2,…,M; vl = F(wl) (1)  

where δkl and γl refer to the weight coefficients and bias parameters 
linking the input and hidden layers, xk is the value of the kth input pa
rameters and F( ⋅ ) is the activation function. 

In addition, the input and output of the output layer are noted as φ 
and Y, and they can be expressed as Eq. 2: 

φ =
∑M

l=1
ϑlvl + τ; Y = F(φ) (2)  

where ϑl and τ refer to the weight coefficient and bias parameters linking 

Fig. 1. The Architecture of ANN.  
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the hidden and output layers. 
The output error εr for N training data is shown as Eq. 3: 

ϵr =
∑N

i=1

(
pi − yi)2 (3)  

where yi is the value of the ith model response output, and pi is the ANN- 
based predicted output. 

The error is propagated backward from the output layer to the hid
den layer, and the errors in the output and hidden layers are denoted as 
εand αj, respectively, which can be written as follows: 

ε = (p − y)(1 − y); αj = εϑl(1 − Yl) (4) 

Hence, the weight coefficient and bias parameters in Eq. 1 and Eq. 2 
are calculated as follows: 

δkl = δkl + bαlxl; ϑl = ϑl + aεYl  

γl = γl + bαl; τ = τ + aε (5)  

where 0 < a < 1 is the weight adjustment parameter, 0 < b < 1 is the 
learning coefficient. 

2.1.2. Polynomial chaos expansion 
Polynomial Chaos Expansion (PCE), a powerful metamodeling 

technique, aims to approximate computational models (e.g., FE models) 
by constructing spectral representations based on appropriate poly
nomial functions [14]. 

Considering a M dimensional unknown input parameters vector X =
{x1,x2,…, xM} described by the joint PDF fXk , k = 1, 2, M, the output 
vector Y as a mapping of X with respect to the computational model, 
denoted Y = M (X). Y can expressed exactly in an infinite expansion as 
shown in Eq. (6) [24,25]: 

Y = M (X) ≈ M
PCE

(X) =
∑

w∈Ω
ζwδw(X) (6)  

where w = {w1,…, wn}(wk ≥ 0) ∈ Ω is the multi-index notation vector 
and Ω ∈ NMis the truncation set of multi-indices. ζ = {ζ1,…, ζn} ∈ R is a 

vector containing the unknown expansion coefficients and δw(X) =

∏M

k=1
φ(k)

wk
(xk) are multivariate polynomials orthogonal with respect to fX, 

of which φ(k)
wk is the univariate orthogonal polynomial in the kth variable 

of corresponding index wk. 
In the real world, Eq. (6) usually needs to be truncated to reduce 

computational costs. There are usually two main truncation options, i.e., 
standard truncation [26] and hyperbolic truncation [27], the latter 
serves as an improved modification of the former and is applied in this 
study, which makes use of the parametric q to define the truncation as 
below: 

ΩM,p,q =
{

w ∈ ΩM,p:‖ w‖q ≤ p
}
, ‖ w ‖ =

(
∑M

i=1
wq

i

)1
q

card ΩM,p ≡ Q

=

(
M + p

p

)

=
(M + p)!

p!M!
(7)  

where p is the polynomial degree and q is the truncated norm, Q is the 
total-degree basis, which grows exponentially with the degree p. 

In Eq. (7), q < 1 corresponds to the hyperbolic truncation scheme, 
and q = 1 is the standard truncation scheme. In general, decreasing the 
q-value can significantly reduce the number of model evaluations, but 
some errors may be caused by the absence of higher order terms in high 
dimensional problems [28]. An easy-to-understand illustration presents 
varying values of p and q for Hyperbolic truncation [29], and a trun
cation scheme with q = 0.75 is used in this study. 

Therefore, the infinite series in Eq. (6) can be rewritten as: 

Y = M (X) =
∑Q− 1

w=0
ζwδw(X) + ϵp ≡ ζT δ(X) + ϵp (8)  

where εp is the truncation error, and superscript T means transpose. 
Hereafter, it became crucial to calculate the polynomial coefficients, 

ζ, for constructing the PCE model. Least Angle Regression (LAR) [30] is 
adapted as a strategy to calculate it, which aims to find coefficient 
vectors with only a few non-zero solutions, while the other coefficients 
are set to zero. It can be formulated as follows: 

ζ̂ = arg min
ζ∈RP

E
[(

ζT δ(X) − Y
)2
]
+λ ‖ ζ‖1 (9)  

where ‖ ζ̂‖1 =
∑

w∈Ω
|ζw| is the regularization term that forces the mini

mization to favor low rank solutions. 

2.1.3. Kriging 
Kriging (or Gaussian process modeling) was first developed as a 

spatial interpolation tool in Geostatistics in the 1950s [31], until it was 
introduced to the field of metamodeling in the 1990s by Sacks et al. [32] 
as an expensive “input-output” mapping relationship for computational 
models. 

Assuming that a Kriging index x ∈ D X⊂RM and the model outputs 
Y = M (x) ∈ R, a Kriging model is expressed as follows [15]: 

Y ≈ M
K
(x) = γT F(x) + D(x) (10)  

where γTF(x) is the trend of the Kriging model, among them, γ represents 
the corresponding regression coefficient vector, F(x) = [F1(x),…, FM(x)] 
is the polynomial basis function. 

In addition, D(x) is a Gaussian process with zero mean and covari
ance function defined as: 

Cov
(
D(xi),D

(
xj
))

= σ2Γ
(
xi, xj;Θ

)
(11)  

where σ2is the (constant) variance of D(x), and Γ(xi,xj; Θ) is the corre
lation function, which describes the “similarity” between observation 
points,D(xi), and new points,D(xj), Θ = [Θ1,…, Θn]T is the hyper
parameters of the correlation function. 

Assuming that Y = {M (x(1)), ...,M (x(N))} obeys a multivariate 
Gaussian distribution, maximizing the likelihood function to estimate 
the unknown Kriging parameters δ = (γ, σ2,Θ) is as follows: 

L (δ;Y ) =
(detC)− 1/2

(2π)N/2 exp
[

−
1
2
(Y − Gγ)T C− 1(Y − Gγ)

]

(12)  

where the covariance matrix C = σ2Γ + Σn, and among Σn is the noisy 
responses. G = [G(x1),...G(xN)]T is the N × M regression matrix with 
elementGij = Gj(xi). 

Taking the partial derivative of Eq. (12) with respect to γ and σ2 to 
zeros, it can be translated into solving the following optimization 
problem to solve for the hyperparameters Θ [33]: 

Θ
∧

= argmin
Θ∈D Θ

[ − logL (Θ;Y )] (13) 

Finally, the optimization problem in Eq. (13) is solved based on 
Covariance Matrix Adaptation–Evolution Strategy (CMA-ES) [34], then, 
the optimization problem can be written as: 

Θ
∧

= argmin
Θ∈D Θ

1
2
[log(detΓ) + Nlog

(
2πσ2)+N] (14)  

2.1.4. Support vector regression 
Support Vector Regression (SVR) was first developed in the 1990s 

[35]. Its core concept is that the original data is projected into a 
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high-dimensional feature space by using a kernel function, and then the 
best predictive function is found in the linear feature space. Roy [16] 
presented an in-depth introduction of SVR as a metamodeling tool for 
uncertainty quantification. 

Supposed some input variables x ∈ D X⊂RM and the model outputs 
Y = M (x) ∈ R, a linear SVR model is formulated as: 

Y ≈ M
SVR

(x) = ϖT x + a (15)  

where ϖ =
∑N

i=1(Λi − Λ∗
i )xi ∈ Rn is a set of weight coefficient, Λi and Λ∗

i 
are positive Lagrange multipliers, and a ∈ R is an offset parameter to be 
estimated. 

For nonlinear problems, by the nonlinear transform x → ψ(x), the 
input variables can be mapped into a high or infinite dimensional 
feature space, thus, Eq. (15) can be extended as follows: 

M
SVR

(x) = ϖT ψ(x) + a =
∑N

i=1

(
Λi − Λ∗

i

)
ψ(xi)

T ψ(x) + a (16)  

where the inner product ψ(xi)Tψ(x) can be expressed as k(xi,x), which is 
the so-called kernel function. In this study, the most popular Gaussian 

kernel, k(xi,x) = exp
(
− xi − x2

2σ2

)
, is selected as the kernel function. 

In addition, the Lagrange multipliers σiand σ∗
i can be solved by 

maximizing the Lagrangian function: 

L(Λ,Λ∗) = −
1
2
∑N

i=1

∑N

j=1

(
Λi − Λ∗

i

)(
Λj − Λ∗

j

)
k
(
xi, xj

)
−
∑N

i=1

(
Λi +Λ∗

i

)
ε

+
∑N

i=1

(
Λi − Λ∗

i

)
yi, s.t.

∑N

i=1

(
Λi − Λ∗

i

)

= 0 and 0 ≤ Λi,Λ∗
i ≤ C, i = {1, ...,N}.

(17)  

where C ∈ R+ is a regularization parameter for the regression problem, ε 
is the insensitive tube width, which is the sparsity property to the SVR. 

Next, the SVR model is then constructed by solving for the hyper
parameters γ = {C, ε, σ}T, and as same as in Kriging models, CMA-ES is 
used to find the optimal value of the hyperparameters. 

2.2. Hybrid Particle Sswarm Optimization and Genetic Algorithm 
(HPSOGA) 

GA is an approach to the search for optimal solutions by simulating 
the natural evolutionary process, inspired by the evolution of organisms 
in nature [36]. The algorithm converts the problem solution into a 
process resembling the crossover and mutation of chromosomal genes, 
where the fitness of each chromosome is evaluated based on an objective 
function. This process usually continues for several generations to obtain 
a best-fit (near-optimal) solution, ensuring the quality of the offspring 
population is always better than that of the parents [37]. There are 
various types of GA applied to engineering problems, in which 
real-coded GAs have become the most popular for their simplicity and 
effectiveness [38,39]. 

PSO is a stochastic optimization algorithm developed by Eberhart 
and Kennedy [40], which is inspired by the social behaviors of swarming 
organisms, such as the foraging behavior of a flock of birds. The basic 
idea is to exploit the sharing of information among individuals, so that 
the movement of the whole population evolves from disorder to order in 
the problem solution space, and thus obtain an optimal solution to the 
problem [41]. 

It is commonly acknowledged that with global search capacity, PSO 
is an effective algorithm to deal with optimization problems. Never
theless, since PSO relies heavily on the quality of the initial population, 
and if the position of the initial population is far from the global best, it 
may be difficult to find the optimal solution [42]. To compensate for this 
drawback of PSO, this study adopts a hybrid PSO and GA (HPSOGA). 

First, the crossover and mutation capacity of GA is used to generate 
initial high-quality populations, after that the global search capacity will 
be employed to look for the optimal solutions. The working principle of 
the HPSOGA (see Fig. 2) are depicted as follows [43,44]: 

Step 1: Initialize each variable of GA. 
Step 2: Calculate the local best populations and rank them in 
increasing order depending on the objective function. 
Step 3: Introduce the best populations as the parents for crossover 
and mutation in GA. 
Step 4: Choose the best offspring populations after crossover and 
mutation for the next iteration. 
Step 5: Repeat steps 3 to 4 until the best population in GA meets the 
termination criteria, i.e. the number ofiterations =100. 
Step 6: Based on the global search capability of PSO, the populations 
obtained from step 5 are used to find the best solution. More specific 
steps are: (i) updated velocity and position of particles in PSO and (ii) 
select the local best for the current iteration and the global best for 
the next iteration based on the greedy strategy. 
Step 7: Repeat step 6 until termination criteria is satisfied. 
Step 8: The iterations process is completed with the best solution. 

3. Proposed parameter identification method: MA-HPSOGA 

The procedure of the proposed MA-HPSOGA method to identify 
structural unknown parameters is described in detail below. 

Step 1: Building computational model and selecting input parame
ters: The first step in the work is to build a high-precision FE model 
that adequately reflects the structural properties, followed by setting 
the input parameters. Usually, due to some uncertainty exists in the 
modeling and measurement, it is difficult to obtain the exact values 
of these input parameters. Therefore, we need to select some un
known input parameters that have a significant impact on the 
structural response. 
Step 2: Preparing the initial dataset for metamodeling: The uncer
tainty of the unknown input parameters is usually expressed in the 
form of a probabilistic model. Hence, the probabilistic model (known 
distribution type, mean, deviation) is first given, and then the input 
dataset is generated using the Latin High Cube Sampling (LHS) 
method. Next, a probabilistic FEA is performed to extract the cor
responding structural system response (or Quantity of Interests - 
QoIs) as the output dataset. Finally, the “input-output” dataset is 
integrated to form the initial dataset for constructing the metamodel. 
Step 3: Constructing and evaluating metamodels: The initial dataset 
will be divided into two parts. In the first part, Design of experiments 
(DoE) [45] will be used to construct the selected four metamodels 
(PCE, Kriging, SVR, ANN), and in the second part, a validate dataset 
will be used to verify their predictive accuracy. 
Step 4: Constructing the objective function: Selecting high precision 
metamodels to substitute time-consuming FE models for predicting 
structural system response, and then integrating into the objective 
function together with the measured structural system response. 
Step 5: Optimizing the objective function: The HPSOGA is adopted 
to optimize the objective function, and after the evolution curve of 
the fitness reaches convergence, the optimal population position is 
output as the identification value of the unknown input parameters. 
Step 6: Model updating: Updating the finite element model with 
parameter identification and comparing the structural system 
response before and after model updating. 

A detailed description of the MA-HPSOGA method for model 
updating is presented in Fig. 3. 
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Fig. 2. The working principle of HPSOGA.  

Fig. 3. Flowchart to describe MA-HPSOGA for model updating.  
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3.1. Metrics to evaluate MA-HPSOGA 

First, R-squared (R2) [46] is adopted to verify the predictive accuracy 
of the above four metamodels, and it is formulated as shown below: 

R2 = 1 −

∑n
i=1

(
yval,i − ypre,i

)2

∑n
i=1

(
yval,i − yval

)2 ∈ [0, 1] (18)  

where yval,i is the output value of the structural response in the valida
tion dataset,ypre,i is the predicted value of the metamodel corresponding 
to yval,i and yval is the mean of the output value in the validation dataset. 

In addition, the Mean Absolute Percentage Error (MAPE) [46] is used 
to evaluate the accuracy of the MA-HPSOGA method due to its intuitive 
percentage representation, which is expressed as follows: 

MAPE =
100%

n

∑n

i=1

⃒
⃒yM,i − yP,i

⃒
⃒

yM,i
(19)  

where yM,i is the measured value of the structure output response, yP,i is 
the predicted value based on metamodel, and n is the number of fitted 
points. 

4. Validation of MA-HPSOGA 

This section validates the effectiveness of the MA-HPSOGA method 
for model updating by studying a cantilever aluminum plate. 

4.1. Model and experimental setup 

An AL6061-T6 aluminum alloy plate, with dimensions of 600 × 400 
× 3 mm3, is anchored in the fixture at a depth of 100 mm embedded, 
thus leading to a cantilevered plate of 500 × 400 × 3 mm3, see Fig. 4(a). 
The plate has a calibrated elastic modulus of 710 MPa and a density of 
2700 kg/m3. 

To accurately acquire the natural frequencies of the cantilevered 
aluminum plate, two popular Experimental Modal Analysis (EMA) 
methods are used: the hammering method and the sweep frequency 
method and the experimental setup to perform EMA for the cantilever 
plate as shown in Fig. 4(a). A Piezoelectric Lead-Zirconate–Titanate 
(PZT) actuator is surface-bonded to the bottom center on the back of the 
cantilever plate for receiving the excitation signal, which was generated 
by an Agilent® 33250A wave signal generator, with a sweep sine exci
tation ranging from 100 to 2000 Hz, and then amplified by a Pintek® 
HA-405 high voltage amplifier with a voltage amplitude of 200 Vpp 
[47]. The vibration response of the plate was measured by a Polytec® 
PSV-400 Scanning Laser Doppler Vibrometer (SLDV), and the Frequency 
Response Functions (FRFs) are obtained based on the FFT method. Ac
cording to Fig. 4(b), the peak amplitude locations identified by the two 

methods are in high consistency, and the first ten peak frequencies were 
extracted as the measured QoIs. 

4.2. Construction of parameter prior distribution space 

Assuming that the elastic modulus and density of the aluminum plate 
are unknown input parameters and obey lognormal distribution, their 
experimental calibration values are the distribution mean. With a 10% 
standard deviation, and then the LHS method is used for sampling to 
construct the prior distribution space of the input parameters, as shown 
in Table 1. The finite element model of the cantilever plate is built using 
shell elements, with dimensions of 25×20×1 mm3, and then, a subset of 
the computed natural frequencies of the aluminum plate is extracted by 
probabilistic FEA as the calculated QoIs. 

4.3. Results and discussions 

In this section, the construction of the metamodel and the MA- 
HPSOGA method for identifying the unknown parameters of the canti
levered aluminum plate are described in detail. 

The unknown input parameters E and ρ were randomly sampled 35 
times by the LHS method, and then the probabilistic FEA (modal anal
ysis) was performed to extract ten calculated natural frequency subsets, 
which correspond to the measured QoIs. Based on this, the initial 35 sets 
of “input-output” datasets were generated. 

There is no solid recommendation for the sampling size of DoE, 
however, there are some suggestions that might be problem-dependent: 
(a) N×(N+1)

2 and (b) 10×N, where N is the number of input parameters 
[48,49]. From these suggestions, we can observe that the size of DoE is 
positively correlated with N. In addition, to explore the modeling ca
pabilities of these four metamodels with small sample sets, a trade-off is 
made in choosing the size of the DoE. Considering two input parameters 
in this case, the first 15 sets as DoE are used to construct these four 
metamodels, and the last 20 sets as validate dataset are used to verify the 
predictive accuracy of these metamodels. Next, these developed meta
models with reliable accuracy are coupled with HPSOGA respectively. 
The following notations specify each combination: PCE_HPSOGA, Kri
ging_HPSOGA, SVR_HPSOGA, ANN_HPSOGA. 

In this study, all numerical computing environments are based on a 

Fig. 4. Experimental setup and results for a modal analysis of a cantilever aluminum plate: (a) required experimental devices adopted from [47] and (b) Frequency 
Response Function based on hammer test and sweep frequency test. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Table 1 
Material properties for the cantilever aluminum plate.  

Unknown Parameters Unit Symbol Model Quantity 

Density kg/m3 ρ Lognormal LN (710, 71) 
Elastic Modulus  MPa E Lognormal LN (2700, 270) 

Poisson’s ratio – ν Constant 0.3  
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high-performance UNIX workstation, which has two nodes, each node 
has a 36-core CPU and 192 GB of memory. The probabilistic FEA is 
executed in ANSYS APDL [50] by calling a 12-core CPU, in addition, the 
PCE, Kriging and SVR models are constructed based on the open-source 
software UQLab [51]. The ANN model is based on BPNN, and then, the 
combination of these metamodels with HPSOGA is also implemented in 
MATLAB. In order to keep fairness, the basic parameters in HPSOGA are 
the same in this study. 

Hereafter, four methods are used to identify the structural unknown 
input parameters, and the results are shown in Table 2. Furthermore, 
some results are shown in Fig. 5 and Table A.5 with the following major 
observations:  

• Regarding the predictive accuracy of the metamodels, we can see 
from Fig. 5(a) that the PCE and Kriging models basically achieve a 
near perfect prediction (R2 is close to 1), and the SVR and ANN 
models also have high predictive accuracy, with their R2 being 
greater than 0.98. Thus, all four metamodels can reliably substitute 
the cantilevered aluminum plate.  

• The total computation time of the MA-HPSOGA method is divided 
into two parts: part 1 is the time consumed to construct these met
amodels, which is the same since the same initial dataset is used, and 
the part 2 is the running time of the MA-HPSOGA method in MAT
LAB. From Fig. 5(a), we can intuitively observe that the PCE_H
PSOGA method has the highest computational efficiency, and next is 
ANN_HPSOGA. Kriging_HPSOGA has the lowest computational effi
ciency, although the Kriging model has a perfect predictive accuracy. 
This is because there is no hyperparameter optimization process 
involved in the PCE model, however, the other three models have to 
optimize hyperparameters to improve the predictive accuracy of the 
model.  

• We can observe that the accuracy of the four methods is very close 
(see Table A.5), the highest accuracy is for SVR_HPSOGA (MAPE is 
0.8374%), and the lowest accuracy is for ANN_HPSOGA (MAPE is 
0.8912%). This can be used to demonstrate the effectiveness of the 
MA-HPSOGA method for model updating, since here the material 
parameters of the aluminum plate have an exact calibration value.  

• From Fig. 5(b), there are slight differences in the convergence speed 
and robustness of the four methods, and it is easy to observe that the 
PCE_HPSOGA method has the best performance in these two aspects. 
In addition, the SVR_HPSOGA method, despite its better perfor
mance in escaping the local optimum, has a convergence speed that 
is far from that of the other three methods. 

Based on the above analysis, the PCE_HPSOGA method stands out 
among the four methods. For a more intuitive observation, the param
eters obtained by the PCE_HPSOGA method were used for the FE model 
updating, and the results are shown in Fig. 6. As it can be clearly seen, 
the frequency curves constructed from the first 150 orders of calculated 
natural frequencies almost overlap before and after the model updating. 
Moreover, the ten measured frequency points are almost distributed on 
both curves, which directly provides convincing evidence for the 
effectiveness of the MA-HPSOGA method. 

5. Application of MA-HPSOGA to small-scaled dam 

The previous section provides a detailed validation for the effec
tiveness of the MA-HPSOGA method applied to model updating. This 
section will take a small-scaled laboratory model as example, to further 

explore the applicability of the MA-HPSOGA method to practical engi
neering problems. 

5.1. Model and experimental setup 

The small-scaled dam was built as a prototype of the WuDongde Arch 
Dam, a super-high hyperbolic arch dam, with a height of 270 m. By 
truncating the boundaries around the prototype dam and at a scale of 
1:200, a small-scaled laboratory dam model is constructed as shown in 
Fig. 7(a). The laboratory dam consists of two parts: the dam and the 
foundation, where the foundation is made of C30 concrete. However, 
the material of the dam is modulated according to the principle of ma
terial ratio in the scale experiment [52]. In addition, an isosceles FE 
model is built using the hexahedral and tetrahedral isoperimetric ele
ments, and the detailed dimensional drawings are shown in Fig. 7(b). 

Fig. 8(a) shows the required experimental devices for the EMA of the 
small-scaled laboratory model. Eight 1A202E® low-frequency piezo
electric accelerometers are installed on the dam, seven of which are 
equally positioned at the crest of the dam and one at the upstream dam 
face. The vibration response of the model is excited by hammer tests, 
and the time-domain signal of the system response is collected by the 
DH5972N® online monitoring and analysis system. Finally, the FRF of 
the small-scaled dam is obtained based on the FFT method, as shown in 
Fig. 8(b), and the first eight peak frequencies as the measured QoIs are 
tabulated in Table A.6. 

5.2. Construction of parameter prior distribution space 

It is assumed that the elastic modulus and density of the dam and 
foundation are unknown input parameters, and both obey normal dis
tribution, where the measured average value of the sampled specimens 
in the dam material is taken as the mean of its distribution function, and 
the normative value of C30 concrete is used as that for the foundation. 
Considering the uncertainty of modeling and measurement, a standard 
deviation of 10% is given, and these material properties are listed in 
Table 3. A subset of the calculated natural frequencies of the small-scale 
dam, corresponding to the measured QoIs, was extracted as the calcu
lated QoIs, and all numerical environments are the same as in Section 4. 

5.3. Comparison and remarks 

In this section, the MA-HPSOGA method is applied to the small- 
scaled laboratory dam model with significant measurement and mate
rial uncertainty. 

The same procedure as in Section 4.3 is performed to generate the 
initial 50 sets of “input-output” datasets, of which the first 20 sets as DoE 
were used to construct these metamodels, and the last 30 as validate 
dataset were used to verify their predictive accuracy. The predictive 
accuracy of the four metamodels is evaluated by the R2 metric, and then, 
they are combined with HPSOGA. Furthermore, to highlight the supe
riority of the coupled approach, the HPSOGA combined with the FE 
model directly is used to optimize the unknown input parameters. This 
process is based on a co-simulation with MATLAB and ANSYS APDL, and 
the similar notations specify their combination: FEM_HPSOGA. 

The results of parameter identification based on above five methods 
are shown in Table 4, besides, Table A.6 and Fig. 9 further illustrate the 
computational accuracy and efficiency of these method. Some obser
vations are as follows: 

Table 2 
Parameter identification results for cantilever aluminum plate.  

Parameters Unit PCE_HPSOGA Kriging_HPSOGA SVR_HPSOGA ANN_HPSOGA 

ρ kg/m3 2726.748 2545.189 2431.344 2719.301 
E MPa 708.834 661.383 638.685 703.077  
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• From Fig. 9(a), we can intuitively find that the predictive accuracy of 
the SVR model (R2=0.8659) is significantly lower than that of the 
other three metamodels (R2 >0.98), which is far from the prediction 
in the cantilevered plate in Fig. 5(a), indicating that the SVR model is 
not as applicable as the other three metamodels in complex 
structures.  

• Comparing Fig. 5(a) and Fig. 9(a), we can make some interesting 
observations: the PCE_HPSOGA method always has the shortest 
running time in MATLAB, while the Kriging_HPSOGA method always 
has the longest, and the other two methods have moderate perfor
mance. This further demonstrates the excellent performance and 
theoretical superiority of the PCE model, bypassing the hyper
parametric optimization process while still producing high-quality 
predictions. However, the other three metamodels, subject to 

hyperparameter optimization, always have difficulty in balancing 
predictive accuracy and computational efficiency.  

• Comparing the computational accuracy of the MA-HPSOGA 
method for parameter identification, we can easily observe 
from Fig. 5(b) and Fig. 9(b) that there are significant differences 
in the evolutionary curves of the fitness values between the two. 
This is because the input parameters in the simple cantilever plate 
have precisely calibrated values (with little material uncertainty), 
so that all four evolutionary curves in Fig. 5(b) almost converge to 
the global optimum. However, when the complexity (more un
known parameters, more complicated FE models, etc.) and un
certainties (materials, measurements, etc.) of the applied object 
increase, the differences in performance between the four MA- 
HPSOGA methods come to the fore.  

• Furthermore, to illustrate the superiority of the MA-HPSOGA 
method, a conventional parameter identification method that 
directly combines the HPSOGA algorithm with the structural FE 
model for iterative optimization is adopted for comparison. As it 
can be seen from Fig. 9(b) and Table A.6, the FEM_HPSOGA 
method has difficulty in reconciling computational accuracy and 
efficiency. Although the method has a moderate computational 
accuracy among the five methods, its computational cost 
(approximated to 83.354 h) is 24.85 times higher than the other 
four MA-HPSOGA methods (approximated to 3.355 h).  

• Notably, ANN models are not usually prone to highly reliable 
prediction accuracy in small sample sets. However, they consis
tently perform well in both cases, and the following two reasons 
may explain this situation. 

(1) Dataset is well structured: the strong mapping relationship be
tween input (material parameters) and output (natural fre
quencies), therefore, the ANN models still work effectively with 
small samples. 

(2) In both cases, the input parameters are few, reducing the possi
bility of high-dimensional nonlinear mappings. 

Overall, it is gratifying to note that the PCE_HPSOGA method not 
only has the highest computational efficiency, but also has the obvious 
highest computational accuracy. Hence, the PCE model is used as a pilot 
model and combined with two popular sub-algorithms in HPSOGA: PSO 
and GA. The following notation specifies each combination: PCE_PSO 
and PCE_GA. The results are shown in Fig. 10(a), from which we can 
draw some conclusions as follows: 

• Compared to the PCE_PSO method, the PCE_HPSOGA method con
verges significantly faster, although their final convergence accuracy 
is almost the same. The PCE_PSO method requires nearly 50 itera
tions to reach convergence of the evolutionary curves of the fitness 

Fig. 5. Construction of metamodel and MA-HPSOGA method for cantilever aluminum plate: (a) the predictive accuracy of metamodels and calculation time of the 
MA-HPSOGA method and (b) the accuracy of the MA-HPSOGA method. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 6. Comparison of results before and after model updating based 
on PCE_HPSOGA. 

L. YiFei et al.                                                                                                                                                                                                                                    



Advances in Engineering Software 185 (2023) 103515

9

values, while the PCE_HPSOGA method converges in less than 30 
iterations, resulting from the fact that the GA provides a better initial 
search space for the HPSOGA and thus improves its convergence 
speed.  

• Compared with the PCE_GA method, the PCE_HPSOGA method not 
only has a faster convergence rate, but also has higher accuracy and 
stronger robustness, attributed to the fact that PSO searches the 

optimal solution by updating the position and velocity between 
particles, thus allowing the HPSOGA to have better performance. 

For more intuitive view on the effectiveness of the MA-HPSOGA 
method for FE model updating, the parameter identification values ob
tained by the best-performing PCE-HPSOGA method are used to update 
the FE model, and the results are shown in Fig. 10(b). As it can be clearly 
seen, the frequency curves constructed from the first 30 orders of 
calculated natural frequencies are clearly separated before and after the 
model updating, which differs significantly from those in Fig. 6. More
over, it is clear that the eight measured frequency points are distributed 
more closely to the posterior frequency curve after the model updating. 

6. Conclusions 

In the real world, almost all complex structures, such as bridges and 
dams, are fraught with numerous uncertainties. Their values of material 
parameters are often difficult to measure accurately due to the complex 
construction environment and processes, as well as the extremely long 
construction periods. Therefore, identifying the most accurate material 
parameters, making the response of the structural FE model as close as 
possible to the real structural system response, becomes a priority in 
structural safety assessment. 

Fig. 7. Physical and numerical model of a small-scaled dam model: (a) laboratory model and (b) FE model.  

Fig. 8. Experimental setup and results for modal analysis of a small-scaled dam model: (a) experimental devices and (b) Frequency Response Function based on 
hammer test. 

Table 3 
Material properties for the small-scaled experimental arch dam.  

Component 
Name 

Unknown 
Parameters 

Unit Symbol Model Quantity 

1-Dam Density kg/ 
m3 

ρ1 Normal N (1.5, 
0.15) 

Elastic Modulus  GPa E1 Normal N (2200, 
220) 

Poisson’s ratio – ν1 Constant 0.22  

2-Foundation 
Density kg/ 

m3 
ρ2 Normal N (30, 3) 

Elastic Modulus  GPa E2 Normal N (2400, 
240) 

Poisson’s ratio – ν2 Constant 0.19  

Table 4 
Parameter identification results for small-scaled dam.  

Parameters Unit PCE_HPSOGA Kriging_HPSOGA SVR_HPSOGA ANN_HPSOGA FEM_HPSOGA 

ρ1 kg/m3 2660.042 2838.398 2453.388 1937.711 2426.167 
E1 GPa 1.622 1.655 1.441 1.170 1.485 
ρ2 kg/m3 2587.024 2531.169 2663.781 2072.919 2740.946 
E2 GPa 32.694 38.305 27.338 34.346 23.806  
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In this study, the unknown material parameters are first randomly 
sampled based on the LHS method under a specified probability distri
bution model. Then a probabilistic FEA is performed to extract the initial 
“input-output” dataset for constructing these metamodels. Further, four 
popular metamodels (PCE, Kriging, SVR, ANN) are constructed based on 
this dataset, and their accuracy is evaluated by the commonly used 
validation metric R2. Next, the objective function is constructed based 
on the measured and predicted natural frequencies based on these 
metamodel, which is optimized using HPSOGA. Finally, the presented 
MA-HPSOGA method is used to identify the unknown input parameters 
of the structure. Some conclusions were summarized as follows:  

• The PCE, Kriging, and ANN models have high predictive accuracy for 
both simple cantilevered plate and complex laboratory dam, while 

the SVR model is dwarfed by the predictive capability in complex 
structures.  

• From four perspectives: computational accuracy and efficiency, 
convergence speed and robustness, the practicality of the MA- 
HPSOGA method in complex structure is judged. Undoubtedly, the 
PCE_HPSOGA method comes out on top in terms of the overall per
formance. SVR_HPSOGA method is not considered a suitable choice 
under the optional prerequisite, considering the relatively poor 
predictive ability of the SVR model.  

• In comparison with the traditional FEM_HPSOGA method, the MA- 
HPSOGA method shows unparalleled superiority. With the selec
tion of a suitable metamodel, not only can the computational effi
ciency be greatly improved, but even the computational accuracy 
can be moderately improved. 

Table A.5 
Comparison of measured and predicted natural frequencies for cantilever aluminum plate.  

Modes Measured frequency [Hz] PCE_HPSOGA Kriging_HPSOGA SVR_HPSOGA ANN_HPSOGA 

1 10 10.30 10.31 10.33 10.30 
2 60 58.55 58.58 58.71 58.69 
3 115 113.94 113.97 114.02 113.87 
4 201 201.15 201.03 201.40 201.01 
5 293 289.38 289.48 290.13 289.03 
6 326 326.00 326.00 326.28 326.35 
7 388 386.93 386.92 387.61 387.13 
8 504 503.43 503.55 504.00 503.89 
9 561 561.74 561.89 561.00 563.08 
10 581 583.98 584.29 585.11 584.63 
R2 0.9999 0.9999 0.9851 0.9877 
MAPE 0.870% 0.863% 0.837% 0.905% 
Runtime in MATLAB [Sec] 7.397 42.817 25.442 16.025  

Table A.6 
Comparison of measured and predicted natural frequencies for small-scaled dam.  

Modes Measured frequency [Hz] PCE_HPSOGA Kriging_HPSOGA SVR_HPSOGA ANN_HPSOGA FEM_HPSOGA 

1 137 139.33 140.45 137.67 139.72 139.35 
2 157 143.01 144.35 141.24 144.67 140.89 
3 304 313.52 316.29 310.81 313.07 315.64 
4 379 375.69 377.19 371.80 377.83 377.12 
5 433 433.01 431.40 421.72 428.55 425.29 
6 448 448.00 441.65 452.61 456.96 452.77 
7 480 488.00 488.07 496.23 488.00 492.36 
8 620 619.96 621.49 620.00 620.02 621.42 
R2 0.985 0.989 0.866 0.996 – 
MAPE 1.8374% 2.1684% 2.4997%  2.0207%  2.347% 

Part 1 [Sec] 12.163 60.686  34.209  27.512  – 

Part 2 [hr] 3.35 3.35 3.35 3.35 – 
Total time[hr] 3.352 3.361 3.356 3.355 83.354  

Fig. 9. Comparison of the computational efficiency and accuracy of five methods: (a) the predictive accuracy of metamodels and computational efficiency of the MA- 
HPSOGA method and (b) the computational accuracy of five methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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In summary, the PCE_HPSOGA method has an excellent ability to 
identify the structural unknown parameters, which can provide suffi
cient guarantees for building high-fidelity FE models, and the target 
structure can be extended to any large and complex structures. However, 
there are still some shortcomings that need to be pointed out in this type 
of method.  

• The precision of the surrogate model is subject to the classical “curse 
of dimensionality”, which makes it difficult to build reliable surro
gate models for high-dimensional problems. This approach is diffi
cult to apply in this situation. 

• Generating an initial dataset for constructing the metamodel ac
counts for nearly all the overall computational expenses of this 
approach to solving the model update problem. If the initial 
computational models demand substantial computational resources, 
for example, simulation of complex systems that require a single 
simulation measured in days, the entire efficiency of this approach 
will be significantly reduced.  

• The type of probabilistic distribution that the material parameters 
obey is based on a priori knowledge and may deviate somewhat from 
the real world. It is reasonable to infer the type in advanced based on 
specimen sampling tests. 

In the future, we will further extend the application of this approach 
in damage identification for complex and nonlinear structural. 
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